

Aerodynamic, aerothermodynamic and propulsive characteristics of the STRATOFLY vehicle

<u>M. Marini</u>, P. Roncioni, L. Cutrone, P. Natale (CIRA) B.H. Saracoglu, A.C. Ispir (VKI) R. Fusaro, N. Viola (Pol. Torino)

3rd International Symposium on Hypersonic Flight Air Force Academy (Pozzuoli), Italy, May 30-31, 2019

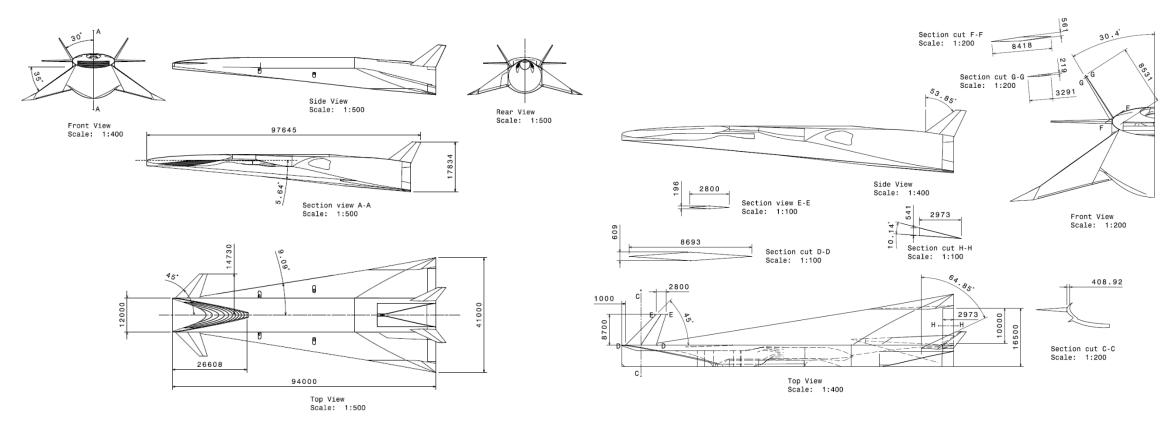
AAA – Sez. Roma Due "Luigi Broglio"

The STRATOFLY Project

Continuation of a series of EC-funded projects (LAPCAT, ATTLAS, FAST20XX, HEXAFLY, HEXAFLY-INT), STRATOFLY is a highly multidisciplinary project combining technological and operative issues for hypersonic civil aircrafts studying the feasibility of high-speed passenger stratospheric flight

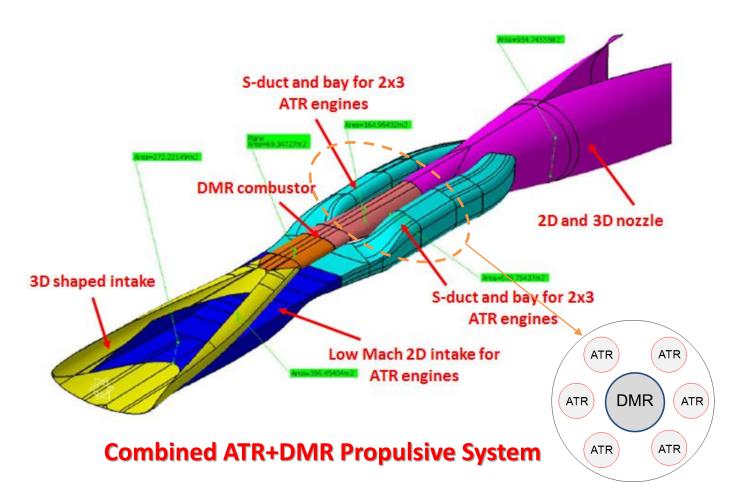
- Technological, environmental, operational and economic factors are taken into account, allowing global sustainability of new air space's exploitation and drastically reducing transfer time (antipodal flights in less than 2÷4 hours), emissions and noise, and guaranteeing the required safety
- Main objectives:
 - to refine design and CONOPS of the LAPCAT-II MR2.4 vehicle
 - o to reach TRL=6 by 2035 for the concept
- STRATOFLY crucial technologies may represent a step forward for future reusable space transportation systems

The STRATOFLY Vehicle



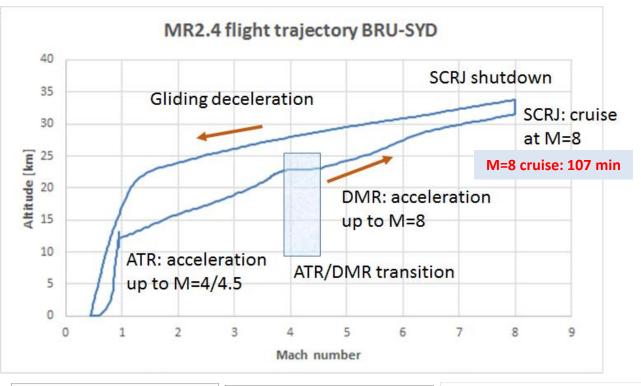
- ➤ L=94m, GTOW=400 tons
- > 300 PAX transportation
- Cruise: Mach=8 @ 32÷33 km
- > Waverider aeroshape with dorsal mounted engine
- Combined propulsion system merging Air-Turbo-Rockets (Mach=0÷4.5) and Dual-Mode-Ramjet (Mach=4.5÷8)

The STRATOFLY Vehicle

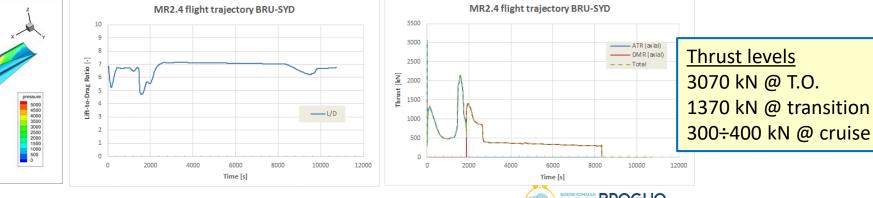

OML – Main Views

FCS - Control Surfaces

> The reference hypersonic propelled vehicle is the LAPCAT-II MR2.4


The STRATOFLY Vehicle

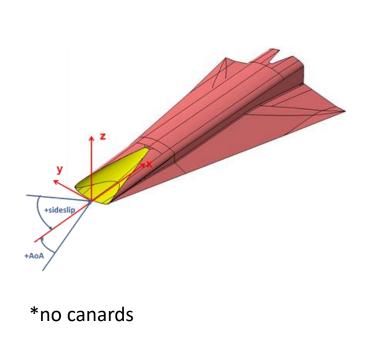
- The sophisticated dorsal-mounted combined propulsion plant of the vehicle enables take-off, cruise, approach and landing solely with airbreathing systems
- 6 Air-Turbo-Rocket engines: 2x3 ATR engines based on an expander cycle mounted laterally, operating from takeoff to Mach=4/4.5
- 1 Dual-Mode-Ramjet: central DMR engine operating from Mach=4.5 to Mach=8
- > The reference hypersonic propelled vehicle is the LAPCAT-II MR2.4



The STRATOFLY Reference Flight: BRU-SYD

APCAT-II MR2.4 Vehicl

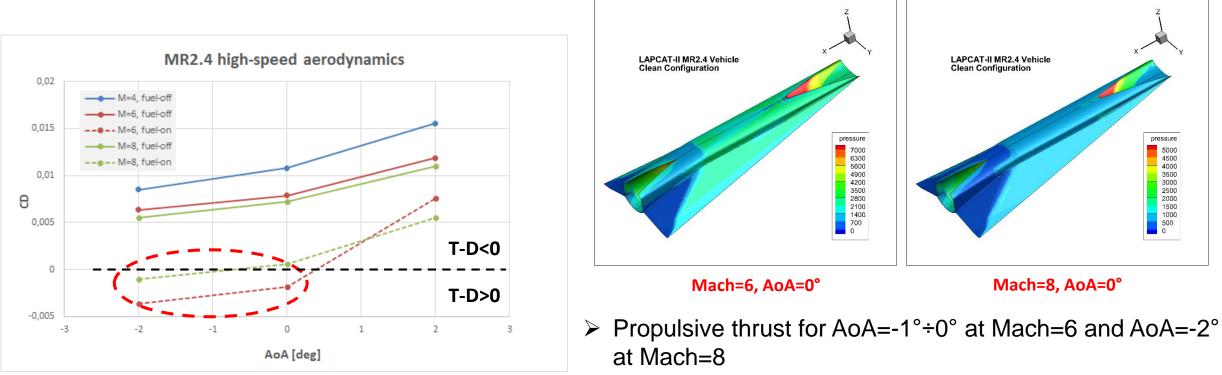
- ➤ Cruise: Mach 8, AoA≈0°, Alt=32÷33.5 km
- Flight duration: 2h 58' (10715s)
- Distance flown: 18734 km
- Load factors not critical
- MTOW: 400 t (180 t propellant)
- MLW: 231 t (12,5 t of propellant left)
- ► L/D≈7 in hypersonic cruise
- DMR shutdown at 33.8 km, Mach 8



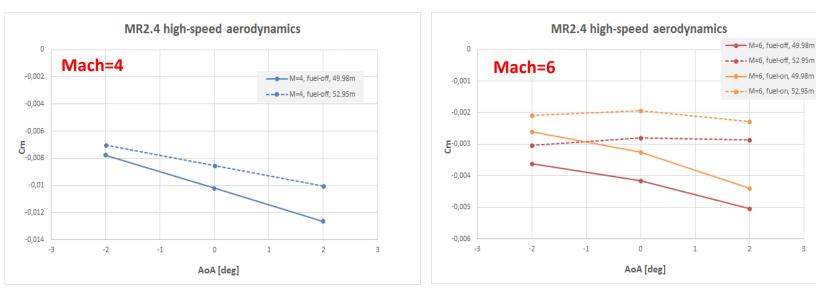
STRATOFLY Aerodynamics

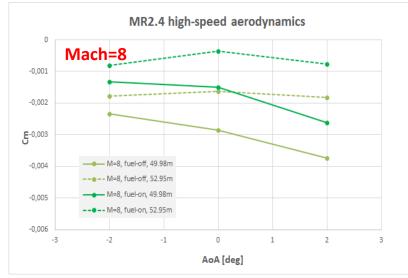
- Aerodynamic behaviour by analysing detailed CFD nose-to-tail aero-propulsive simulations (Mach=0.3, 0.5, 0.75, 4, 6, 8; different AoA values; clean configuration)
- Effect of engine (on/off)
- Effect of CoG movement during flight, longitudinal static stability

	LAPCAT-II - MR2.4
L _{ref} (m)	94
S _{ref} (m²)	2365
b _{ref} (m)	41
CoG (m) from nosetip	49.98 (53.2%) 20% fuel 52.95 (56.3%) 100% fuel
Vertical Tail	no
Horizontal Tail	undeflected*
Available Data	CFD (ESA, CIRA)
Flight Conditions (also M=0.3, 0.5, 0.75 with ATR engine)	M=4, 6, 8 AoA(°)=-2, 0, 2 fuel-on/off


AAA Sez. Roma Due "Luigi Broglio"

MR2.4 (CIRA) Mach=8, ApA= Turbulent flow	0 deg, H=33km (SA0)				Z
Temperature (K): 400	800 858.654 890.114	1000 1400	1800 2200	2600	


STRATOFLY High-Speed Aerodynamics

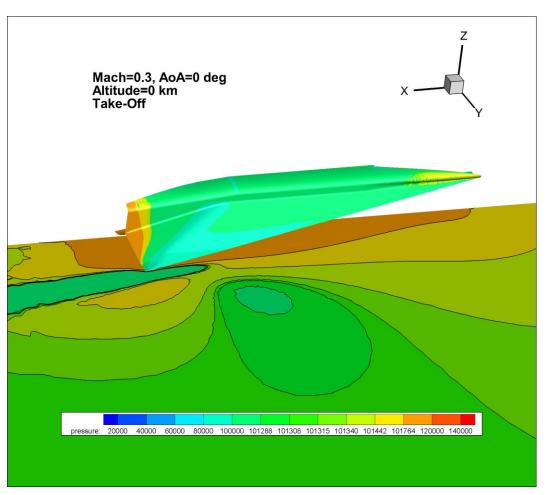

- Aero-Propulsive analysis of the MR2.4 vehicle (AEP-DB provided by ESA)
- High supersonics/hypersonics: Mach=4, 6, 8; AoA=-2°, 0°, 2°; AoS=0°
- > Hypothesis: DMR thrust action line coincides roughly with X-axis of vehicle
- > X_{COG} 49.98m (53,2%, most forward, 20% fuel) and 52.95m (56,3%, most backward, 100% fuel) from nosetip

STRATOFLY High-Speed Aerodynamics

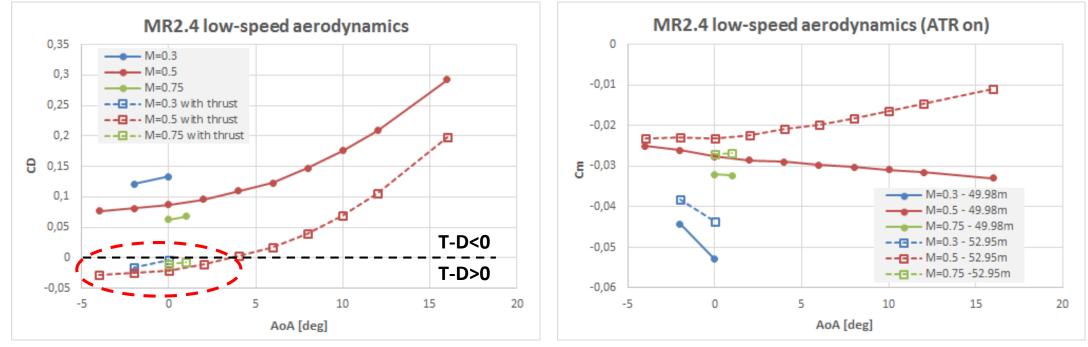
- ➢ Beneficial effect of engine for all flight conditions → upshift of Cm curve → reduction of aileron deflection for trim
- Clear stability for CoG at 53.2% at all Mach numbers, neutral stability or incipient instability for CoG at 56.3%
- Need for trimmability with negative aileron deflection for all flight conditions (large ΔCm to null)
- ➤ Conflicting requirements: stability vs. trimmability → find optimum!

 $C_z = C_L \cos \alpha + C_D \sin \alpha$

$$Cm_1 = Cm_0 + C_z \frac{(X_1 - X_0)}{L_{ref}}$$


Cm,alpha					
Mach	DMR	XCoG (m)			
		49,98	52,95		
4	OFF	-0,00122	-0,000758984		
6	OFF	-0,00036	4,11344E-05		
6	ON	-0,00045	-4,88087E-05		
8	OFF	-0,00035	-9,55412E-06		
8	ON	-0,00032	1,1102E-05		

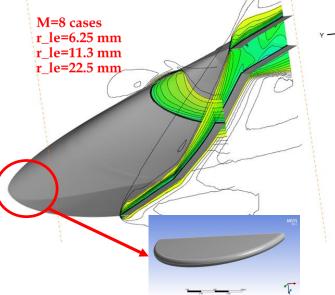
STRATOFLY Low-Speed Aerodynamics

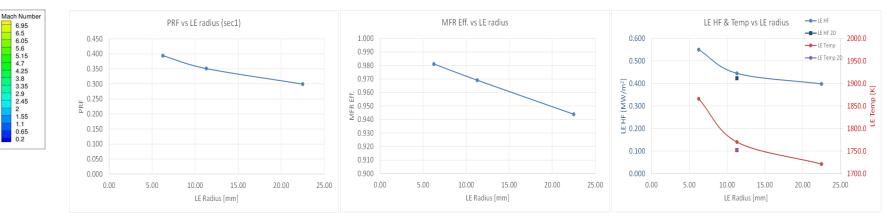

- Aero-Propulsive analysis of the MR2.4 vehicle (AEP-DB provided by ESA)
- Subsonics: Mach=0.3, 0.5, 0.75; different AoAs; AoS=0°
- Hypothesis: ATR thrust action line coincides roughly with X-axis of vehicle
- X_{COG} 49.98m (53,2%, most forward, 20% fuel) and 52.95m (56,3%, most backward, 100% fuel) from nosetip

Mach	Altitude (km)	AoA (°)
0.3	0	-2, 0
0.5	7	-4,-2, 0, 2, 4, 6, 8, 10, 12, 16
0.75	10.6	0, 1

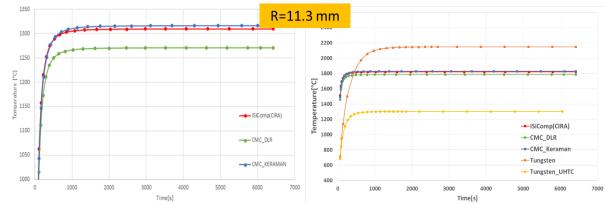
STRATOFLY Low-Speed Aerodynamics

- Take-off possible conditions with higher thrust for AoA=-2°
- > T-D > 0 for both Mach=0.5 (-4° <AoA<4°) and Mach=0.75
- Clear stability with CoG at 53.2%, neutrally stable (Mach=0.75) or unstable (Mach=0.5, AoA>0°) with CoG at 56.3%
- Need for trimmability at all conditions, especially at take-off (Mach=0.3)

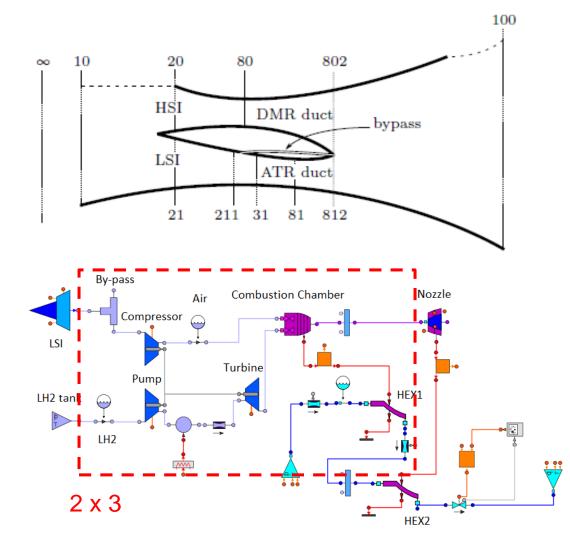

 $C_z = C_L \cos \alpha + C_D \sin \alpha$


$$Cm_1 = Cm_0 + C_z \frac{(X_1 - X_0)}{L_{ref}}$$

	Cm,alpha				
Mach	ATR	XCoG (m)			
Wach	AIK	49,98	52,95		
0.3	ON	-0,00433	-0,00269		
0.5	ON	-0,00038	0,000629		
0.75	ON	-0,00036	0,000437		


STRATOFLY Aerothermodynamics

- CFD simulations on a reduced domain to select the proper rounding at intake leading edges through evaluation of intake's performance and local heat fluxes
- Thermal analysis along the Mach 8 flight slag trajectory to evaluate the time-dependent temperature of the structure for the different materials at the intake and crotch


R _{LE} (mm)	HF _{LE} [kW/	′m²] H	IF _{cR} [kW/m²]					1100 -	1100 -
6.25	550		1140					1050	1050
11.3	445		1092						
22.5	398		1136					\	
		Sample Thickness		Tis	Silcomp @ LE / Crotch	IIComp @ LE / Crotch TCMC_DLR @ LE / Crotch	IComp @ LE / Crotch Texes @ LE / Crotch Theramon @ LE / Crotch		
		(mm)							Crotch
		12.5	6.25		1314 / 1745 °C	1314 / 1745 °C 1268 / 1697 °C	1314 / 1745 °C 1268 / 1697 °C 1312/ 1739 °C	1314 / 1745 °C 1268 / 1697 °C 1312 / 1739 °C 1929 °C	1314 / 1745 °C 1268 / 1697 °C 1312 / 1739 °C 1929 °C 1171 °C
		22.6	11.3		1309 / 1820 °C	1309 / 1820 °C 1271 / 1785 °C	1309 / 1820 °C 1271 / 1785 °C 1316 / 1829 °C	1309 / 1820 °C 1271 / 1785 °C 1316 / 1829 °C 2147 °C	1309 / 1820 °C 1271 / 1785 °C 1316 / 1829 °C 2147 °C 1302 °C
		45.0	22.5		1329 / 1896 °C	1329 / 1896 °C 1301 / 1871 °C	1329 / 1896 °C 1301 / 1871 °C 1320 / 1885 °C	1329 / 1896 °C 1301 / 1871 °C 1320 / 1885 °C 2488 °C	1329 / 1896 °C 1301 / 1871 °C 1320 / 1885 °C 2488 °C 1504 °C

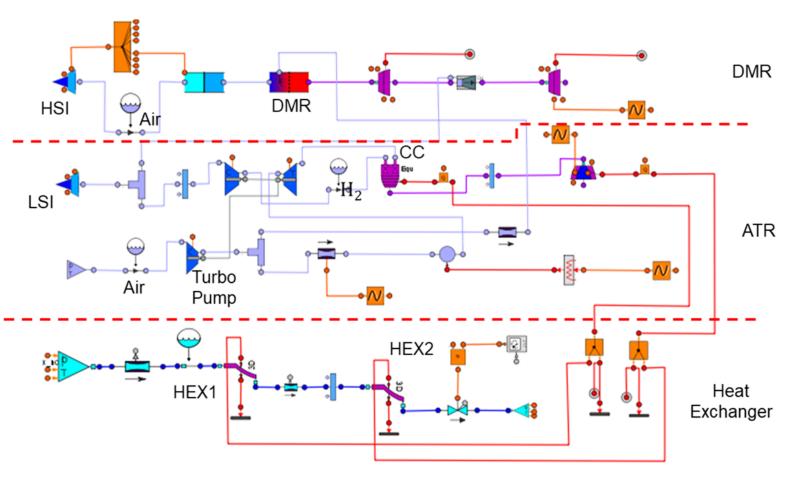
- Suggestions for vehicle's material layout
- Need for active cooling system

Engine installation along the propulsive duct:

DMR Unit

- 10 20: Supersonic intake (HSI)
- 20 80: DMR intake region

80 – 802: DMR isolator + combustion chamber +

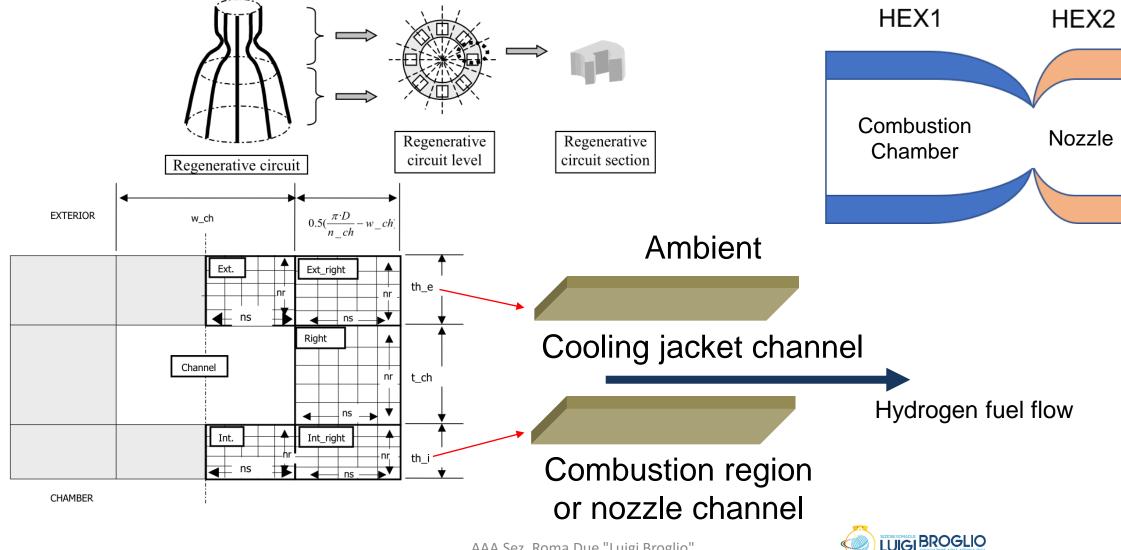

- + nozzle + by-pass out
- 802 100: Common nozzle

ATR Unit

- 10 21: Supersonic intake (LSI)
- 21 211: Air-compressor
- 31 81: ATR combustion chamber
- 81 812: Flow combination of six ATR engines
- 812 100: Common nozzle

Ecosimpro layout of the complete propulsion system for the cruise speeds of Mach 0 ÷ 4.5:

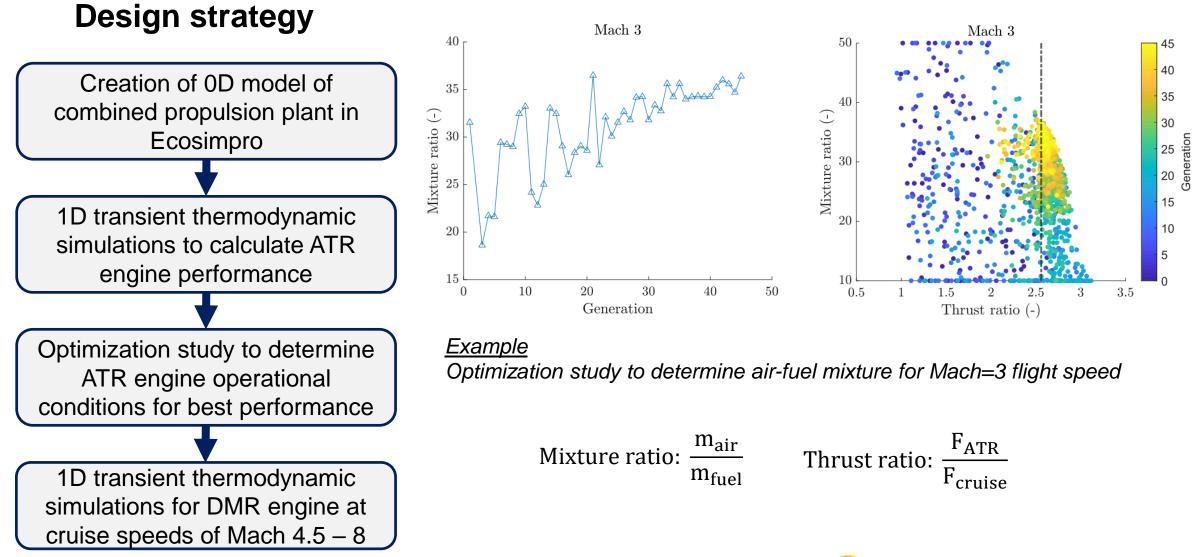
Air Turbo Rocket (ATR):


- Mach 0 ÷ 4.5
- Hydrogen turbine driving air compressor and fuel pump
- Constant pressure combustion in a pre-burner
- ✓ Bypass line to boost the DMR thrust

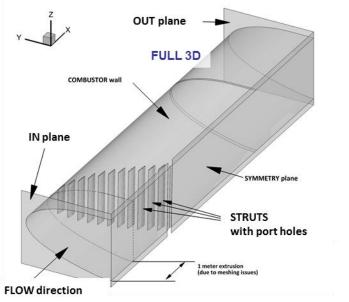
Dual Mode Ramjet (DMR):

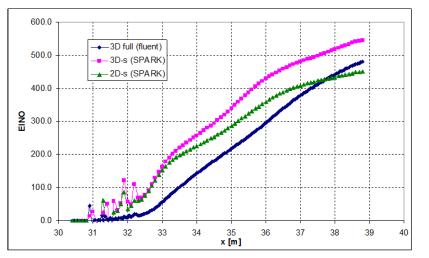
- ✓ Mach 1.5 ÷ 4.5 (Ramjet Mode)
- Subsonic combustion and acceleration to supersonic speeds with diverged nozzles

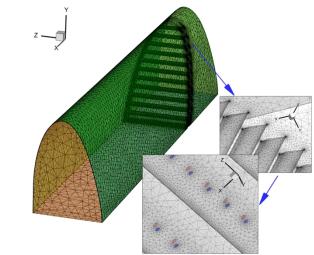
Heat pick-up system from heat sinks used to increase the enthalpy of turbine flow:

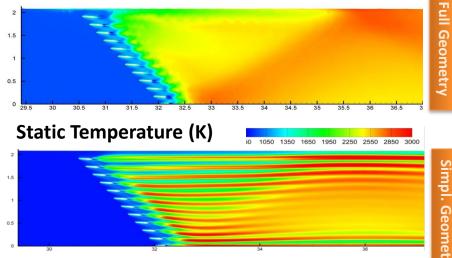

AAA Sez. Roma Due "Luigi Broglio"

Ecosimpro layout of the dual mode ramjet engine for the cruise speeds of Mach 5 ÷ 8: Isolator Combustion chamber Flight trajectory table (from CIRA's SPREAD code) ху DMR nozzle $\circ \circ$ High speed intake Hydrogen fuel tanks **Operational prediction for dual mode engine:**


- ✓ Mach 5 ÷ 6 (Ramjet Mode)
- ✓ Mach 6 ÷ 8 (Scramjet Mode)


Common nozzle



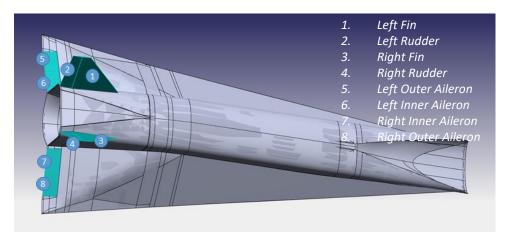


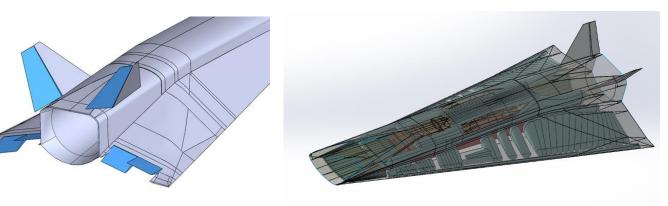
MR2.4 DMR Combustor

- Detailed CFD analysis of DMR full-scale combustor in scramjet mode, Air/H₂ turbulent combustion
- Geometry modelling: simplified 2D, simplified 3D, full configuration with 11M cells unstructured grid (23 struts, 1248 port holes)

- Optimization of MR2.4 scramjet combustor to reduce NOx emissions, with different injection strategies, strut layouts, lengths of the combustion chamber, etc.
- Use of CIRA's SPREAD engineering code and CFD detailed methodology, both validated with experiments at DLR-HEG

AAA Sez. Roma Due "Luigi Broglio"


Conclusions


- Aero-propulsive characterization of the STRATOFLY vehicle along the whole flight reference mission, with an assessment of aero-propulsive balance, longitudinal stability and trimming requirements in the different phases of flight
- Assessment of system requirements in terms of CoG position, AoA for maximum thrust, AoA for maximum L/D, deflection for longitudinal trim
- > STRATOFLY aeroshape evolution on-going, in particular concerning:
 - refinement of the main intake design with adding of rounded leading edges, to reduce locally the thermal loads while keeping the same intake's performance
 - suggestions for vehicle's material layout and need for active cooling
 - design and analysis of flight control system, i.e. sizing of ailerons/elevons and vertical tail
- Two different types of engines combined to form STRATOFLY propulsion plant for take-off, supersonic acceleration and hypersonic cruise
- Thermodynamic model of the propulsion system for 1D transient simulations and for extensive optimization study done to determine the conditions for reliable operation with best performance

Future Work

- Assessment of AEDB (external surfaces only) by engineering methods (different for Mach no. ranges) with the effect of deflected control surfaces as ailerons, rudders, etc.
- Flight Mechanics analysis (longitudinal and lateral-directional static stability, roll-yaw coupling, trimmability)
- > New flight trajectory generation and optimization (with updated MCI data and AEDB)
- Optimization of ATR heat exchangers and expander elements to achieve right sizing for the propulsion system components, optimization of the DMR combustor

THANKS FOR YOUR ATTENTION !

STRATOFLY MR3 1:100 model exhibited at AEROdays 2019 (Bucharest

BFOI ASFEINDARCIÓN OD TUHH FUS

STRAT FLY

Dorna

SES

HIGH AVIAT

COOPAN

dgac

FREQUENTIS SESAR PAUTNERS

AAA Sez. Roma Due "Luigi Broglio"