

III INTERNATIONAL SYMPHOSIUM ON HYPERSONIC FLIGHT 2NDLIEUTENANT L. NARDI 2NDLIEUTENANT F.M.RIBOLI POZZUOLI, 31/05/2019

What possible future scenarios can we expect?

What will the proliferation of such weapons change in the geopolitical scenario we live in?

What are the main advantages of Hypersonic Weapons compared to standard ballistic missile?

Is it worthwhile for Italy and its allies to invest money in R&D initiatives on hypersonic technologies?

What are NATO Countries doing with respect to this situation?

III INTERNATIONAL SYMPHOSIUM ON HYPERSONIC FLIGHT 2NDLIEUTENANT L. NARDI 2NDLIEUTENANT F.M.RIBOLI POZZUOLI, 31/05/2019

HISTORICAL BACKGROUND

POTENTIAL ROLES

É2		3	6	771	04E3 E	7	1.1	a u	TU	COL
2	11			HC T	S 11/8	1	70		56	17.4 2
				28日	1 X7 W	7	BA	524	67	6 E.C.
				×32	I 35 3.	1		156		1.37
	ÆΗ					¥.,			更正才	277
	21			\$ 20	12.1	11	8		KH7	E7.2
				N9 Sec	228			8.76	130	1.000
ч.	1.1			970	E E.1	5		100.13	C = Q	181

CONCLUSION

£977	- 1 - 1 - 1	0		1.1.1		U.G	082	100 0	37 - 305	1
1 J	18 IV.			ULT		11	EZE.	56 E	UE LEA	
22				6.7.1		\$7.2		DA D	11 111	
						X . C		Out I	of the second second	
				2.14			227	675 8		
M.Y				3.12			HORC	71.1	39 195	
201	6. AU			11.4			10000	N DO		
216				OUE.		1 C	1.2.2.4	243	1 697	
	5 17		1	100	4		I¥ A	271	351	
7.11				1.4					112	
				A			1.0			
100								2011	44 1 7	
V.C						× 1		191	N 13	
11				11				10 20 10		
11							- CO			
2.8	4						E 3.	A 14 A		
					18		3 11	- AC		
-1.0							4. 22			

H.G.V. AND H.C.M.

AGENDA

HII.					 	
INT? W	ONCA:		149117	E NB	7 7 7 3 3	
86	-93H		CHINT	N 13 TE	5 178 5	
12	14020		VEADU	14 31		
\mathbf{I}^{\perp}	OTOT I		な王原義臣	17 73	(LI/ S	
	TST 11	5 7 2	DETECT.	(1) 置木	5 225 4	
CO.	89635) I 9	31781	12.75	C VEL S	
73	AT ADB	K 7 7	11 E 2		1 12330	

FUTURE SCENARIOS

	119614		а.		8	019		- 10	1			01-5
	17630				0.50	7						924
	柴 米1 3 王				232	Z411						6.44
	1246					CDN				C		751.
	10.15				THE	03						287
	三百美人				1-1	0.4	5					304
	ULL CA				6116	.1*				3.64		THE
	ATCT									KU.		
30	CREA				I'UE	39						
11	中力で言		77			26				E.F.		107
11	1216		3		126	37				157	1 7	7H
14	EVAL				872	56				35		\$63
3	0258		L.		390	DB				3.5	16.1	TIME
6	1607		*	Ö		1151					1177	DAT
	医复加用			T.		(1)				BC	1 C 2	2712
7	DECH				1 a	11				1011	196	НОЛ
	C/125					6.54	V			10	207	975
	HADE					E H				6.0	77	280
	5,0,35	Ð				90						DEL
	191H					6				E C		2112
	THE				H H	1						主向
	9				7 0							

J

YESTERDAY: STATISTICAL WARFARE

Today: Mutually Assured Destruction

Hypersonic Glide Vehicles

FOOTAGE OF TESTS - NOT ACTUAL COMBAT

ADVANTAGES

Speed

Defense Penetration

Rapid Response Time

Manoeuvrability

Survivability

Destructive Power

No Crew Risk

20

POTENTIAL ROLES

HMs Carried by Fighters Jets: New Tacticts

Possibility of Hitting a Surface Target at Any Time

Air-to-Air Applications

An Hypersonic Stealth Air-to-Air Missil<mark>e</mark>

FUTURE POSSIBILE SCENARIOS

«It should be underlined that hypersonic missiles could have destabilizing effects not much because they increase the likelihood of a crisis, but because they would make it more acute, and favor an escalatory logic in case a crisis occurs in the first place . »

COUNTERMEASURES

DETTERENCE

ANTI-HYPERSONIC DEFENSE SYSTEMS

LAUNCH ON WARNING POSTURE DEVOLUTION OF DECISION MAKING

FILL THE GAP

CONCLUSION: THE KEY IS TIME

FIND SHELTER BEFORE COUNTDOWN EXPIRES

Joint NATO Commission to Evaluate the Situation

Need of a Space Force

Thank you for your attention!

Regards to:

Distretto Aerospaziale

ACCADEMIA AERONAUTICA

III Simposio Internazionale sul Volo Ipersonico

Hypersonic Missiles: New Challenges to Global Security

Missili Ipersonici: Nuove Sfide alla Sicurezza Globale

AUTHORS:

2nd Lieutenant Pilot NARDI Lorenzo 2nd Lieutenant Engineer RIBOLI Francesco Marco

FW

BY THE TERMS OF THE LAW IN FORCE ON COPIRIGHT. THE REPRODUCTION, DISTRIBUTION OR USE OF THIS DOCUMENT WITHOUT SPECIFIC WRITTEN AUTHORIZATION IS STRICTLY FORBIDDEN

A NORMA DELLE VIGENTI LEGGI SUI DIRITTI DI AUTORE QUESTO DOCUMENTO È DI PROPRIETA' DEGLI AUTORI E NON POTRA' ESSERE UTILIZZATO, RIPRODOTTO O COMUNICATO A TERZI SENZA AUTORIZZAZIONE

References:

- G. N. C. A. L. R. M. M. Richard H. Speier, «Hypersonic Missile Nonproliferation Hindering the Spread of a New Class of Weapons,» RAND Corporation, Santa Monica, California, 2017.
- G. Douhet, The Command of Air, Italian Ministery of War, 1921.
- U. G.A.O., "Long-Range Emerging Threats Facing the United States As Identified by Federal Agencies," December 2018.
- D. V. J.-D. Caron, «An examination of the military utility of long range hypersonic missiles,» Defence Research and Development Canada, September 2006.
- M. G. Marzolf, «Time-Critical Targeting Predictive versus Reactionary,» USAF, School of Advanced Airpower, March 2004.
- A. Macias, «Russia again successfully tests ship-based hypersonic missile which will likely be ready for combat by 2022,» *CNBC*, December 2018.
- Naval Uninhabited Combat Air Vehicles; A Strategy-to-Task Approach to System Requirements, Naval Air Warfare Center Weapons Div, China Lake, CA, November 1998.
- J. T. R. M. C. a. Y. D. Hall, Impact of Scramjet Technology in Supporting the Army's Mission to Defend Conus Against Cruise Missiles and TMB. Proceedings of the 2005 Systems and Information Engineering Design Symposium., 2005.
- B. Nguyen, Modelling Ballistic Missile Defence System Final Report, NOARD/AN Technical Report,, March 2005.
- E. Ekmektsioglou, «Hypersonic Weapons and Escalation Control in East Asia,» Summer 2015. [Online]. Available: https://www.airuniversity.af.edu/Portals/10/SSQ/documents/Volume-09_Issue-2/ekmektsioglou.pdf.
- F. Fukuyama, The End of History and the Last Man, Free Press, 1992.
- K. Mahbubani, Has the West Lost It? A Provocation, 2018.
- T. G. S. V. Di Mare Alessio, Trade-off architetturale e piano di sviluppo di un propulsore per missili tattici ipersonici, Tesi di Laurea, 2010.
- «France Studies Nuclear Missile Replacement,» Defense News, p. p. 22, December 2014.
- T. F. A. L. ONERA, «DCPS—System Design and Performance Evaluation: Projects and Research Topics».