NearSpace Traffic Management – A concept to accommodate hypersonic flights

Sven Kaltenhäuser German Aerospace Center, DLR Dr. Ruth Stilwell Aerospace Policy Solutions, LLC

3rd Symposium on Hypersonic Flight May 31st 2019

Users of the NearSpace region

Transit users

those operations that transit the airspace vertically, including space launch and re-entry operations.

Persistent users

those users for which the airspace is the destination from which services will be provided to the Earth, this includes high altitude long endurance unmanned aircraft

Point to point users

those users that traverse the airspace while providing transportation between two points on the Earth.

Conditions in the NearSpace region

- Aircraft have met transit requirements to controlled airspace. Allows services without new mandates.
- Free from obstructions or terrain.
- Airspace above FL 660 is currently uncongested, allowing for the use of large separation standards as safety mitigation.
- Aircraft closely monitored by ground operator with infrastructure designed to conform to planned routes and altitudes
- Shared information on position, altitude, and trajectory can be used for collision avoidance purposes and for planning conflict-free routes,

Safe Operation

- \rightarrow Safe separation between all vehicles
- \rightarrow Large speed differences
- \rightarrow Tactical control becomes ineffective
- \rightarrow Maintaining separation becomes a strategic effort

- Ensure safe operations at all times
- Plan operations to be conflict free
- Allocate appropriate operating zones
- Monitor operated flights
- Ensure Surveillance
- Supply interfaces to STM and ATM

Strategic Separation

- \rightarrow Plan operation ahead in time to remain conflict free
- \rightarrow Consider different types of operation
 - → short duration/high speed flights with inherent time uncertainties
 - \rightarrow long duration flights over relevant area of interest

NearSpace Operation Management System (NOMS)

- \rightarrow Route and schedule approved as free of conflict
- \rightarrow Augmented by tactical monitoring
- \rightarrow Mission assurance provided for long term planning
- \rightarrow Ensure also transfers to be free of conflicts
 - \rightarrow in airspace below FL660 and
 - \rightarrow into Earth orbit

- Ensure safe operations at all times
- Plan operations to be conflict free
- Allocate appropriate operating zones
- Monitor operated flights
- Ensure Surveillance
- Supply interfaces to STM and ATM

4D Operating Zone concept

- \rightarrow Uncertainty of aircraft position over time
- \rightarrow Modelling of route as operating zone
- \rightarrow Defined as a four dimensional shape and volume
- → Varies based upon performance characteristics and mission design

Operating Zone planning

- \rightarrow Changes over time are part of flight planning process
- \rightarrow Changes occurring during operation
 - \rightarrow by external factors (weather, equipment failure, ..)
 - \rightarrow by mission requirements
 - \rightarrow due to de-conflicting measures

to be covered by NOMS processes and services.

- Ensure safe operations at all times
- Plan operations to be conflict free
- Allocate appropriate operating zones
- Monitor operated flights
- Ensure Surveillance
- Supply interfaces to STM and ATM

Monitoring tasks

- \rightarrow Monitor vehicles along route and schedule clearance
- \rightarrow Ensures vehicles remain operating free of conflicts
- → Changes to designated routes and operating zones checked against planning for related time of operation
- → Inflight modifications and ad hoc change requests coordinated by operators in charge using the NOMS
- \rightarrow Adapt concept of flight centric ATM and ATC

Infrastructure and Data provision

- \rightarrow Utilize ground operator infrastructure
- → Use of vehicle state vector, status data and flight planning information
- \rightarrow Data provision facilitated by SWIM based services

- Ensure safe operations at all times
- Plan operations to be conflict free
- Allocate appropriate operating zones
- Monitor operated flights
- Ensure Surveillance
- Supply interfaces to STM and ATM

ATM interfacing

- → Transit between NearSpace and airspace below FL660 to be coordinated
- \rightarrow Consider flight planning requirements of both domains
- \rightarrow Flight plan and status information sharing via SWIM
- \rightarrow Adapt existing data exchange formats (e.g. FIXM)

STM interfacing

- → Ensure conflict free trajectory clear of interference with other space objects during planning phase
- → Updates on position and status for re-entering vehicles
- → On-time transfer of flight information to be established (e.g. incorporating runtime infrastructure of SWIM)

- Plan operations to be conflict free
- Allocate appropriate operating zones
- Monitor operated flights
- Ensure Surveillance
- Supply interfaces to STM and ATM

Commonalities between ATM and STM

ITU's orbit and spectrum allocation principles

- To avoid harmful interference
- To ensure efficient, rational and cost-effective utilization radio-frequency spectrum and satellite-orbit resources
- To develop procedures that facilitate access to the resources
- To establish global standards and associated material to assure the necessary required performance, interoperability and quality

ICAO's Air Traffic Management principles

- To prevent collisions between aircraft
- To expedite and maintain an orderly flow of air traffic
- To provide advice and information useful for the safe and efficient conduct of flights
- To establish global standards and recommended practices in support of a safe, efficient, secure, economically sustainable and environmentally responsible civil aviation sector

Merging the principles of both domains

- Basis for principles for the safe, efficient, rational and cost effective utilization of the NearSpace region. These principles are needed whether or not a state chooses to provide air traffic services above 20km. These principles would be to:
 - Avoid harmful interference
 - Prevent collisions between operators in the NearSpace region
 - To provide advice and information useful for the safe and efficient conduct of flights
 - To develop procedures that facilitate access to the resources
 - To expedite and maintain an orderly flow of air traffic
 - To establish global performance, interoperability and quality to provide a safe, efficient, secure, economically sustainable operating environment from 20km to 100km.

Summary

- Major challenge: Diversity of operational types and mission profiles Three types of users: Transit – Persistent – Point to point
- Concept Approach: Strategic separation to ensure safe operations at all times
 - Plan free of conflict regarding route and schedule
 - 4D Operating Zone cover performance- / mission type uncertainties
 - Tactical monitoring augments strategic separation process
 - Multi-source surveillance approach
 - NearSpace Operation Management System (NOMS)
 - ATM and STM interfacing facilitated by SWIM based services
- Provision of NearSpace services does not require new mandates
 - Merge STM & ATM principles as NearSpace regulation framework
 - Allow operators to fly without tactical intervention by ATC

• Kaltenhäuser, S., Stilwell, R.; **The NearSpace Interface between Air and Space Traffic Management**. IAC-18,D6.3.3, 69th International Astronautical Congress 2018, IAC 2018.

NearSpace Traffic Management – A concept to accommodate hypersonic flights

Sven Kaltenhäuser German Aerospace Center, DLR Dr. Ruth Stilwell Aerospace Policy Solutions, LLC

Thank you for listening!

