

Suborbital Flights and Spaceports A feasibility study for a military spaceport

Maj. Fabio MONACI

ItAF – Flight Test Centre

3rd International Symposium on Hypersonic Flight Air Force Academy (Pozzuoli), Italy, May 30-31, 2019

AAA – Sez. Roma Due "Luigi Broglio"

AAA Sez. Roma Due "Luigi Broglio"

Agenda

- Origin of the task
- Objective of the task
- Methodology
- Results
- Conclusions
- Way-ahead

Origin of the task

- 3
- Sub-orbital flight is becoming a reality
- Effects on several fields: from regulation to air defense
- Italian Air Staff General Office for Space: a strategy to handle this change
- Military Spaceports to support future sub-orbital systems test flights
- Need for a feasibility study

Objective of the task

- Sub-obj. 1: Analysis of a possible sub-orbital flight profile from/to one of the proposed airbases (Decimomannu AFB, Grazzanise AFB)
- Sub-obj. 2: Risk analysis with respect to the «third party» (on ground)

Methodology (1/4)

- □ Sub-obj. 1:
 - Identification of a reference flight system (Virgin Galactic)
 - Development of a flight model in a simulated environment
 - Identification of relevant flight phases and relating flight parameters
 - Performance of a typical flight profile and relevant flight parameters recording (v, fz, H, AoA)

Methodology (2/4)

- □ Sub-obj. 2:
 - Assumption: only loss and explosion as catastophic events (no FMECA available)
 - A safety target was established: 1E-6 casualty per FH
 - Development of an explosion model using Mod&Sim
 - First part of the analysis: global risk analysis → definition of a population density upper limit
 - Second part of the analysis: specific mission risk analysis → verification of the feasibility of a specific mission

Methodology (3/4)

- □ Sub-obj. 2 First Part:
 - For each i-th flight leg:

$$P_{catastr-mission} = \sum_{i} P_i \times A_i \times DP_i \times T_{\%i} \rightarrow \text{DP}$$

where

 $P_i = [1E-6 - 1E-3]$

Ai depends on the event and the debris total energy DPi is the average population density on the ground T%i is the percentage of the mission time to fly the i-th leg

Evaluation of the acceptable population density upper limit (DP)

Methodology (4/4)

- 8
- □ Sub-obj. 2 Second Part:
 - It is not necessary to be always compliant with the DP upper limit determined in the previous part; it is necessary to be compliant with the safety target
 - So, for a specific flight mission, for each i-th leg and for each catastrophic event, the corresponding risk was calculated
 - All contributions were summed up and the cumulative risk was compared to the safety target
 - This evaluation was repeated for each inherent reliability level [1E-6 1E-3] until the cumulative risk was below the safety target

Results – Analysis of a flight profile

Results – Analysis of a flight profile

Results – Decimomannu AFB

 $DP_{tot} = 44,1 \text{ ab/km}^2$

Results – Decimomannu AFB

Dati ISTAT 2001 scala 1:500.000 3 6 9 12 15 Nautical Miles

LVL DI RELIABILITY	DPmax [ab./km^2]
1E-6	112,0 – 374,0
1E-5	11,2 - 37,4
1E-4	1,1 - 3,8
1E-3	0,1 - 0,4

Security target: 1,9E-6 – 2,2E-6

LVL Reliability	Pcas,cum
1E-6	1,53E-7 - 4,42E-7
1E-5	1,53E-6 - 4,42E-6
1E-4	1,53E-5 - 4,42E-5
1E-3	1,53E-4 - 4,42E-4

Results – Grazzanise AFB

 $DP_{tot} = 261,6 \text{ ab/km}^{2}$

Results – Grazzanise AFB

LVL DI RELIABILITY	DPmax [ab./km^2]
1E-6	132,0 – 398,0
1E-5	13,2 - 39,8
1E-4	1,3 – 4,0
1E-3	0,1 - 0,4

Security target: 2,2E-6 – 2,3E-6

LVL Reliability	Pcas,cum
1E-6	1,70E-7 - 4,54E-7
1E-5	1,70E-6 - 4,54E-6
1E-4	1,70E-5 - 4,54E-5
1E-3	1,70E-4 - 4,54E-4

Dati ISTAT 2001 scala 1:500.000 <u>3 6 9 12 15</u> Nautical Miles

Conclusions

- On the basis of the information available and of the assumptions, the flight parameters determined in a simulated environment confirmed the known charcteristics of each specific flight phase
- Also, within the same limits and assumptions, the preliminary risk analysis demonstrated that a sub-orbital flight mission from/to the considered airbases is feasible, as long as the global inherent relibility is 1E-6 or better

Way-ahead

- This study should be improved by:
 - Obtaining information about the specific FMECA
 - Using more accurate catastrophic events and impact models
 - Performing other risk analyses, e.g. on «on-air third parties» (mid-air collision)
 - Additional analyses about other relavant aspects are to be included: infrastructures, logistics, facilities, etc.

Questions

Maj. GArn Fabio MONACI – Flight Test Wing/Aero-Space Engineering Group fabio.monaci@aeronautica.difesa.it +39 06 9129 4488 (605-4488)

Back-up slides

Description of the object 1/5 White Knight Two

Aircraft specifications [edit]

Data from Virgin Galactic Presentation 2007^[22]

General characteristics

- Crew: 2 (flight crew) + spaceship launch crew
- Capacity: payload 17,000 kg (37,000 lb)^[23] to 50,000 ft (15,000 m).; 200 kg satellite to LEO when carrying a LauncherOne orbital launch vehicle.^[24]
- Length: 78 ft 9 in (24 m)
- Wingspan: 141 ft 1 in (43 m)
- Powerplant: 4 × Pratt & Whitney Canada PW308 turbofan engines, 6,900 lbf (30.69 kN) thrust each

Performance

• Service ceiling: 70,000 ft (21,000 m) ^[23]

Description of the object 2/5 Space Ship Two

Description of the object 3/5 Space Ship Two

- **Flight Phases Description**
- Take-off
- Transfer/Climb
- Release
- Boosted Ascent
- Coast
- Re-entry
- Pull-up
- Glide
- Landing

Description of the object 4/5 Grazzanise AFB

Description of the object 4/5 Decimomannu AFB

Airport	Rwy Lenght (m)	Rwy Width (m)	Rwy Altitude (m msl)
Decimomannu (CA)	3000	30	100

Gravity Model Nonspherical gravitational field perturbations

Atmospheric Model Jacchia model and NRLMSISE-00

Linear Propagation Model Runge-Kutta and 8° order Simplectics integrators

Momentum Propagation Model Euler method integration (by means of RK)

Perturbation Model

Nonspherical gravity sources Solar radiation pressure Gravity-gradient torque

Flight System Model

MESHNAME=white_knight2 EMPTY_MASS=8799 Kg FUEL_MASS=9797 Kg MAIN_THRUST=122771 KN ISP=50000 m/sec (SPECIFIC IMPULSE)

MESHNAME=Space_ship_two EMPTY_MASS=6273 Kg;6123 + 150 Kg for 2 people FUEL_MASS=7030 Kg MAIN_THRUST=270000 KN ATTITUDE_THRUST=1400 KN ISP=2650 m/sec (SPECIFIC IMPULSE)

Boundary conditions

Phase/Manouver	Condition
SS2 Release/Separation	15 km altitude
Boost	60 sec burn time 50 km burn-out altitude
Ascent	88° pitch attitude fino all'apogeo
Feathering (tail stowing)	90Km altitudine
Feathering (tail deployment)	24 Km altitude
Pull-out	40km - 28km altitude range

Case Study 1: Decimomannu

Definition of the flight parameters:

Airspeed: WP0-WP1 \rightarrow 150 KTAS WP1-WP2-WP3 / WP7-WP8-WP9-WP10-WP11 \rightarrow 250-350 KTAS WP3-WP4 \rightarrow 250-300 KTAS WP5-WP6-WP7 \rightarrow 500 - 2.200 KTAS WP11-WP0 \rightarrow 200 KTAS Altitude: WP1-WP2-WP3 \rightarrow 10.000 ft WP8-WP9-WP10-WP11 \rightarrow 6.000 ft -45.000 ft WP4 \rightarrow 45.000 ft WP6 \rightarrow 125.000 ft Apogee \rightarrow 330.000 ft WP7 \rightarrow 57.000 ft

Case Study 1: Decimomannu

Definition of the flight parameters:

```
Impact angles (loss):
WK2+SS2 \rightarrow 5 deg - 15 deg
SS2 \rightarrow 15 deg - 30 deg / 80 deg - 90 deg (only ballistic)
```

For other parameters, mean values from flight simulations were considered

Case Study 2: Grazzanise

Definition of the flight parameters :

```
Airspeed :
WP1-WP2 → 150 KTAS
WP2-WP3-WP5 / WP10-WP11-
WP12-WP13 → 250-350 KTAS
WP5-WP6 → 250-300 KTAS
WP7-WP8-WP9 → 500 - 2.200
KTAS
WP13-WP1 → 200 KTAS
```

```
Altitude:
WP2-WP3-WP5 \rightarrow 10.000 ft
WP10-WP11-WP12-WP13 \rightarrow 6.000 ft
- 45.000 ft
WP6 \rightarrow 45.000 ft
WP8 \rightarrow 125.000 ft
Apogee \rightarrow 330.000 ft
WP9 \rightarrow 57.000 ft
```


Case Study 2: Grazzanise

Definition of the flight parameters:

```
Impact angles (loss):
WK2+SS2 \rightarrow 5 deg - 15 deg
SS2 \rightarrow 15 deg - 30 deg / 80 deg - 90 deg (only ballistic)
```

For other parameters, mean values from flight simulations were considered