Hybrid rocket systems for advanced low-cost hypersonic flight test platforms

F. Barato, D. Pavarin

A University of Padua Spin-off

- Company presentation
- Airborne hypersonic test platform
- Hybrid propulsion feature
- Conclusions

Company presentation

T4i is a spin-off of Padua University born in 2014 to transfer into the market technologies developed within university of Padua since 2006

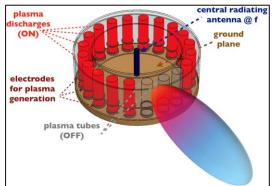
Main research areas:

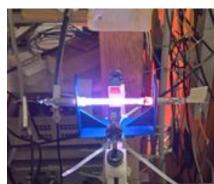
ELECTRIC PROPULSION

Development of space thrusters based on helicon source technology

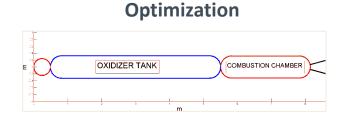
HYBRID PROPULSION

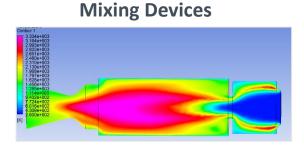
Development of hybrid rockets for aeronautic and space applications


TELECOMMUNICATION

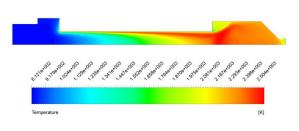

Design development and testing of plasma based antennas

SUPPORT TO AEROSPACE INDUSTRIES

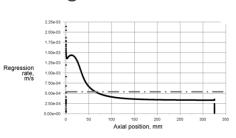



Numerical Skills

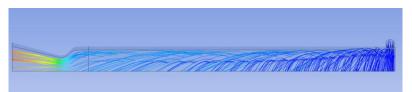
OD / 1D Analysis

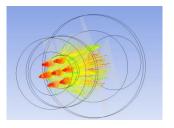


250 0.4 0.45 0.5 0.55 0.6 0.65 0.7 0.75 0.8 0.85 0.9



Internal ballistic analysis

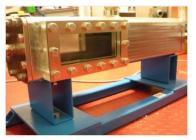

Self calculation of regression rate

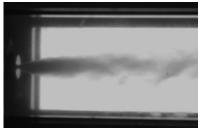

Commercial CFD and Customization

2D / 3D steady state simulations

Vortex Injection

Liquid Injection





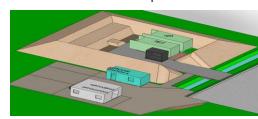
Experimental Skills

Cold testing

Injection characterization test bed

Lab-scale testing

Characterization and optimization of several configurations:


- 0.1-1 kN class, GOX-plastic
- 1-3 kN class, N2O-plastic
- 0.1-1 kN class HTP-plastic

Increased-scale testing

30 kN N2O-paraffin 10 kN HTP-paraffin

Open air testing

Minimum footprint equipment

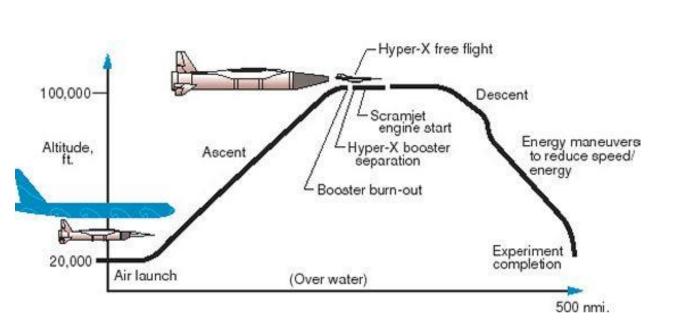
- Company presentation
- Airborne hypersonic test platform
- Hybrid propulsion feature
- Conclusions

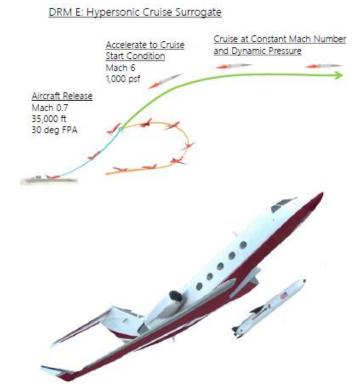
Existing Hypersonic Flight Test Bed

- Flight test beds are an important complementary asset to ground test bed
- Flight test bed are able to provide a unique set of tests
- Capability of testing system and subsystems
- New player into the market

Go Launcher

X51 wave rider

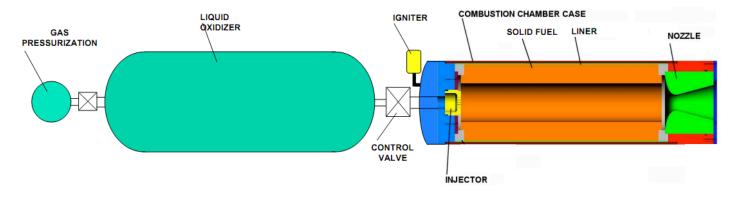

NASA - Phoenix Missile Hypersonic Testbed



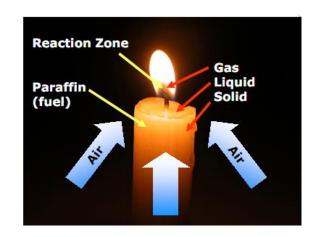
X43 test bed

Existing Hypersonic Flight Test Bed

- Company presentation
- Airborne hypersonic test platform
- Hybrid propulsion feature
- Conclusions



Hybrid Propulsion


Fuel and oxidizer are physically separated

One of the two is in solid phase

(generally the fuel) -> inert grain

Diffusive flame

Theoretical specific impulse

Hybrid Advantages

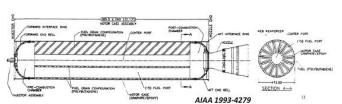
Compared to	Solids	Liquids
Simplicity	- Chemically simpler - Tolerant to processing errors	- Mechanically simpler - Tolerant to fabrication errors
Safety	- Reduced chemical explosion hazard - Thrust termination and abort possibility	- Reduced fire hazard - Less prone to hard starts
Performance Related	- Better Isp performance - Throttling/restart capability	- Higher fuel density - Easy inclusion of solid performance additives (AI, Be)
Other	- Reduced environmental impact	- Reduced number and mass of liquids
Cost	- Reduced development costs are expected - Reduced recurring costs are expected	

- Tipping point technology:
 - -> small investment
 - -> substantial consequences
- Liquids and solids:
 - -> mature propulsion technologies
 - -> only small incremental improvements
 - -> Need of heavy infrastructures

Advantage of Hybrid Propulsion

Hybrid Propulsion offers several advantage respect to solid propulsion

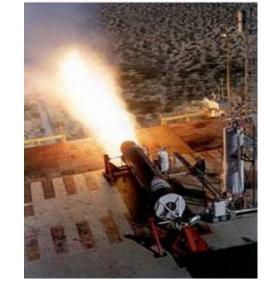
- > Higher safety due to separation between oxidizer and fuel
- > Capability of turning on and off the motor and to perform real time variation of the thrust profile.
- > Reduced manufacturing and management costs
- > Green propellant
- > Reusability
- > Easy integration into aircraft

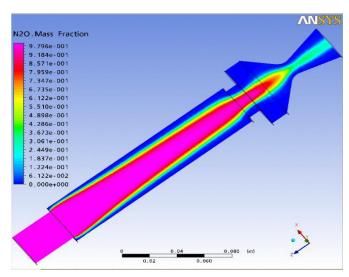


Famous Hybrids

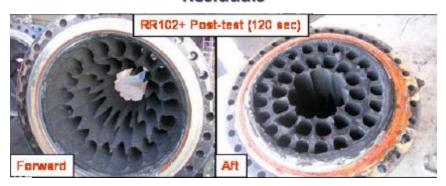
SpaceShipOne

- Ansari X-Prize winner (2004)
- First private suborbital manned spacecraft

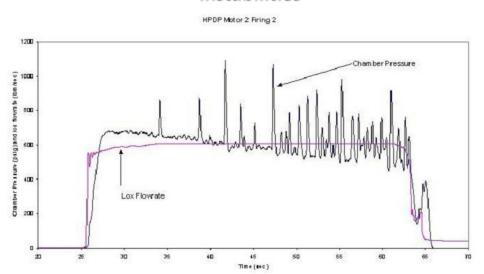

In the early 1990's
AMROC was founded to
develop commercial
hybrids. They tested
large 250klbs thrust
motors. Venture failed in
the late 90's.

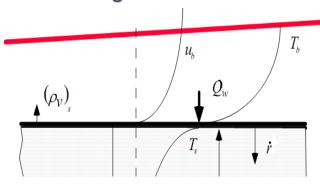


Teledyne Ryan **AQM-81 Firebolt** target Drone



Classical Hybrid Issues


Low efficiency


Residuals

Instabilities

Low regression rate

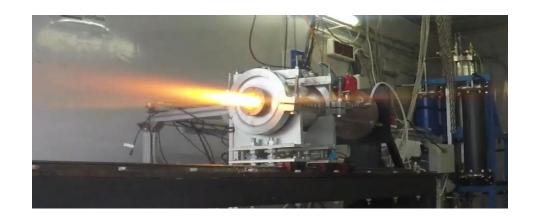
Hybrid rocket @University of Padua: RATO Booster

Hybrid motor development activities:

Hybrid booster for Rocket Assisted Take-Off (RATO) 20kN peak thrust, 3.5 sec burning time hybrid rocket motor

July 2007: Cold test

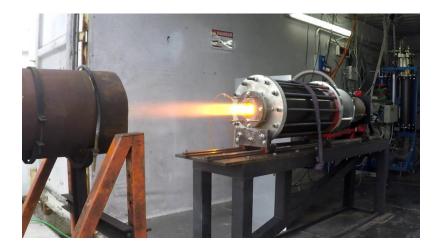
 July-Sept. 2008: sub-scale and modeling

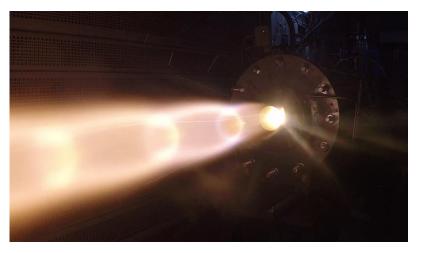

- Dec. 2008-March 2009: full-scale testing on test stand and modeling
- April 2009-July 2009: 1 flight prototype (steel-aluminum) test stand and flight test
- End of 2010: 2 flight prototype (carbon fiber-aluminum) test stand and flight test

Hybrid rocket @University of Padua/T4i: Hydrogen peroxide small scale motors

- Dozens of fire tests performed
- 80s tests successfully performed
- Re-ignition and throttling (1:5) with catalyst bed demonstrated
- Thin film theory demonstration

Motor operation at subscale level has been proven

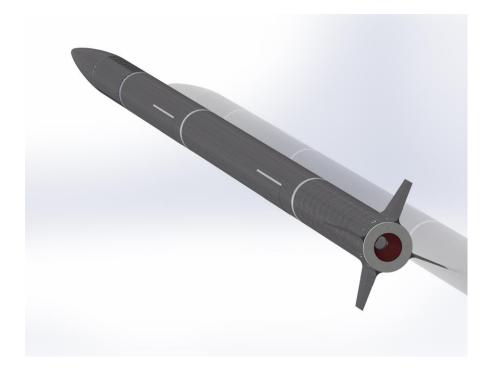




Hybrid rocket @University of Padua/T4i: Hydrogen Peroxide major scale motor

- Tens of tests performed
- Easy operation of the system achieved
- Efficiency up to 95% achieved

10 kN motor successfully tested up to 50 s



Flight test

- >20 km HTP /Paraffin hybrid rocket
- Test bed to demonstrate motor performances
- Internal design in cooperation with University of Padua
- First flight Q1 2020

- Company presentation
- Airborne hypersonic test platform
- Hybrid propulsion feature
- Conclusions

Conclusions

- Airborne hypersonic test bed are a fundamental development asset
- Hybrid rocket system are a valuable asset to drastically reduce costs and increase versatility
- Hybrid rocket technology provide also reusability options
- Hybrid rocket technology is very suitable also to airborne platforms
- Important technology milestone have been achieved in Italy in developing high-performance hybrid rocket systems

