

Enhanced theoretical models and numerical methods for hypersonic flows

Giuseppe Pascazio

Dipartimento di Meccanica Matematica e Management, Politecnico di Bari

3rd International Symposium on Hypersonic Flight Air Force Academy (Pozzuoli), Italy, May 30-31, 2019

AAA – Sez. Roma Due "Luigi Broglio"

Collaborations

FRANCESCO BONELLI DARIO DE MARINIS

GIANPIERO COLONNA

LUIGI CUTRONE

Liceo Scientifico Statale "Leonardo da Vinci" Bisceglie Italy

Objective:

Development of a High Performance Computing (HPC) CFD code for investigating high enthalpy flows

Outline:

- Governing equations and numerical method
- Thermochemical non-equilibrium models
- multi-GPU code performance
- Immersed boundary approach
- Results
- Conclusions

Hypersonic Flight

Transcontinental civil flights: LAPCAT, FAST20xx (source: esa website)

Hypersonic cruise missiles (source: defence Advanced

Orion capsule (source: NASA)

Research Agency illustration)

Numerical method

Cell-centered Finite Volume Space discretization on a Multi-block structured mesh

$$\mathbf{F}_{num} = \mathbf{F}_{E,num} - \mathbf{F}_{V,num}$$

Reactive Navier-Stokes equations:

- Advection and pressure term (hyperbolic)
- Shear-stress, heat flux terms (diffusive)
- Chemical source terms (stiffness)

Solution strategy:

- Operator splitting approach: Frozen step + Chemical step
 - ✓ <u>Frozen step:</u> Method of Lines:
 - Space discretization + Time integration
 - Space dicretization: Inviscid & Viscous terms scheme
 - Time integration: Runge-Kutta scheme
 - ✓ <u>Chemical step:</u> implicit scheme for stiff terms

John C. Tannehill, Dale Anderson, Richard H. Pletcher, Computational Fluid Mechanics and Heat Transfer, Taylor & Francis 1997

Numerical method

Operator splitting approach

Frozen step: AUSM or Flux Vector Splitting of Steger and $V_{i,j} \frac{d\mathbf{U}_{i,j}}{dt} + \sum_{Faces} \mathbf{F}_{num} \cdot \mathbf{n}\Delta S = 0$ Warming with MUSCL approach for higher order accuracy; Gauss divergence approach for viscous terms; Runge-Kutta Gauss divergence approach for viscous terms; Runge-Kutta scheme up to third order for time integration

$$\frac{\partial}{\partial t} \int_{V_0} \mathbf{U} dV = \int_{V_0} \mathbf{W} dV$$

Chemical step

$$\Delta t_c^{(v)} = \Delta t_f / n$$

$$\frac{\partial \mathbf{y}}{\partial t} = \mathbf{P} - \mathbf{L}\mathbf{y} \qquad \mathbf{y} = \left\{ \boldsymbol{\rho}_i \right\}_{0 \le i \le N}$$

$$y_{i}^{k}(t + \Delta t_{c}^{(v)}) = \frac{\Delta t_{c}^{(v)} P_{i}(\mathbf{y}^{k-1}) + y_{i}(t)}{1 + \Delta t_{c}^{(v)} L(\mathbf{y}^{k-1})}$$

Sub-time step

P is a vector and L a diagonal matrix. P_i and $L_i y_i$ are non-negative and represent, respectively, production and loss terms for component y_i

Gauss-Seidel iterative scheme

Thermochemical non-equilibrium models for air

MULTI-TEMPERATURE 5 SPECIES PARK MODEL¹

- 17 reactions + 3 transport equations for the vibrational energies
- Arrhenius type rate coefficients function of an effective temperature calculated as a geometrical mean of translational and vibrational temperatures
- Vibrational levels follow a Boltzmann distribution at temperature Tv
- Tuned on experimental measures
- Not computationally demanding
- It may fail when the conditions are far from those for which it was tuned

5 SPECIES State-to-State (StS) MODEL²

- Detailed vibrational kinetics of molecules.
- 68 and 47 vibrational levels for N₂ and O₂ respectively
- Thousands of elementary processes → High accuracy but huge computational cost

¹ C. Park, Nonequilibrium Hypersonic Aerothermodynamics, Wiley, New York, 1990

² M. Capitelli et al., Fundamentals Aspects of Plasma Chemical Physics: Kinetics, Springer Science & Business Media, 2015

GPUs are very powerful and efficient

MPI allow to efficiently scale the computations across a multiplenodes GPU cluster

> Our implementation has shown speed-ups (single GPU vs single-core CPU) up to 150

MPI-CUDA: GPU vs CPU computational performance

NVIDIA Tesla K40 (235 W) VS Intel Xeon CPU E5-2630 (6 cores) v2 2.60 GHz (80 W)

StS	Fluid cells	12 GPUsTime per iteration (s) (Energy (J))	12 CPUs Time per iteration (s) (Energy(J))	Speed up (1 GPU vs 1 core)
	64x32	6.33 (1.8*10 ⁴)	8.17 (7.8*10 ³)	1.29 (7.7)
	128x64	6.36 (1.8*10 ⁴)	26.71 (2.56*10 ⁴)	4.2 (25.2)
	256x128	6.90 (1.9*10 ⁴)	105.9 (10.2*10 ⁴)	15.3 (91.8)
	512x256	15.91 (4.5*10 ⁴)	419.5 (40.3*10 ⁴)	26.4 (158.4)
	1024x512	68.72 (19.4*10 ⁴)	1702.1 (163.4*10 ⁴)	24.8 (148.8)
Park				
	64x32	7.50*10 ⁻³ (21)	1.59*10 ⁻³ (1.5)	0.21 (1.3)
	128x64	7.77*10 ⁻³ (22)	4.55*10 ⁻³ (4.3)	0.59 (3.5)
	256x128	7.24*10 ⁻³ (20)	1.68*10 ⁻² (16)	2.32 (13.9)
	512x256	1.36*10 ⁻² (38)	6.53*10 ⁻² (63)	4.8 (28.8)
	1024x512	3.48*10 ⁻² (98)	2.46*10 ⁻¹ (236)	7.1 (42.6)

Flow past a sphere: Nonaka⁴ test case

Numerical and experimental shock shape: (a) StS model; (b) Park model

⁴S. Nonaka et al. ,JTHT 14 (2), 2000

Nonaka⁴ test case: stagnation line profiles

Mach Number

Normalized density

Nonaka⁴ test case: stagnation line profiles

Stagnation line population with actual to Boltzmann ratio in the inset: (a) N2; (b) O2

Nonaka⁴ test case: vibrational distributions wall profiles

Wall surface populations with actual to Boltzmann ration in the inset: (a) N2; (b) O2

Immersed-Boundary Method

Immersed-Boundary solver for Cartesian grid

- the centers of the *fluid-interface* and *solid-interface* cells are projected onto the body surface along its normal direction, so as to obtain *fluid-cell projection points* (FCPP) and *solid-cell projection points* (SCPP);

- the flow variables at the centers of the *fluid* cells and the temperature at the *solid* cells are the unknowns to be computed using a finite-volume dual time stepping solver;

- the *solid* cells do not influence the flow field at all and vice versa;

- the boundary conditions are imposed at the *fluid-interface* and *solid-interface* cells by a local IB reconstruction scheme.

Supersonic flow past a circular cylinder

The new LS reconstruction has been validated and compared with the 1D reconstruction in the case of supersonic turbulent flow past a circular cylinder.

Sharma nozzle test case

Immersed-Boundary Method: Sharma nozzle test case

Cartesian mesh

Mach number contours

Immersed-Boundary Method: Sharma nozzle test case

N2 Tv contours

IB vs Body fitted

Computational mesh: internal points (solid)

USV – Unmanned Space Veichle

Computational mesh: external points (fluid)

USV – Unmanned Space Veichle

Transonic flow past an Unmanned Space Vehicle

Triangular mesh of the Unmanned Space Vehicle

C_L vs α at M = 0.94

 α is the angle of attack β is the side-slip angle δ_E is the elevon deflection angle δ_R is the rudder deflection angle

- We developed an efficient multi-GPU code for two-dimensional fluid dynamics
- We demonstrated the accuracy and the feasibility of fluid dynamic computations of thermochemical non-equilibrium flows by means of detailed state-to-state (StS) vibrationally resolved air kinetics
- The MPI-CUDA approach allowed us to efficiently scale the code across a multiple-nodes GPU cluster with good scalability performance: comparing the single GPU against the single core CPU performance speed-up values up to 150 were found.

Current and future work

- Flow-wall boundary treatment: models for catalysis and ablation
- Extension to 3D with a high-resolution hybrid WENO/central difference scheme
- Introduction of ionized species

Associazione Italiana Di Aeronautica e Astronautica

2019 AD

Web site https://www.aidaa.it/

Association of Aeronautics and Astronautics

September 9-12, 2019 @ University of Rome "Sapienza"

NATIONAL CONGRESS

Associazione Italiana Di Aeronautica e Astronautica

Web site https://www.aidaa.it/

Aerotecnica Missili & Spazio

Since 1920 Official Journal of AIDAA Now published with *Springer*

https://www.springer.com/engineering/mechanical+engineering/journal/42496

