

1

Ultra High-Temperature Ceramics (UHTCs)

UHTCs are based on metal refractory borides and carbides such as ZrB₂(T_m=3323 K), ZrC (T_m=3805 K), HfB₂ (T_m=3523 K), HfC (T_m=4103 K), TaB₂ (T_m=3373 K), TaC (T_m=3500 K) which make them suitable for high temperature applications in harsh environments such as Thermal Protection Systems (TPS) and Components for Solid Propellant Engines

Addition of silicon carbide (ML) to these materials strongly improves their oxidation resistance at high temperature as well as room temperature strength

2nd Intern. Symposium: "Hypersonic Flight: from 100.000 to 400.000 ft" Rome, Italy 30th July 2016 ymposium: 3

AIM OF THIS WORK

Development and Testing of Innovative UHTCs for Nozzle Components in Small Scale Solid Propellant Engines

General requirements

Suitable combination of : density, thermal expansion coefficient, thermal diffusivity, specific heat, thermal conductivity, mechanical strength and capability to withstand severe environment (CO_2 , N_2 , H_2 , CO, etc.) and temperatures (up to 3000 K)

2nd Intern. Symposium: "Hypersonic Flight: from 100.000 to 400.000 ft" Rome, Italy 30th July 2016 ymposium: 4

DEVELOPED STRATEGY

- Fabrication of fully dense small size samples of various UHTC systems
- Screening of UHTC candidates by means of TGA under different conditions (CO₂, N₂, air)
- Fabrication of relatively large size samples for standard testing
- Performing ablation test
- Evaluation of thermophysical properties (Thermal diffusivity and
- conductivity, heat capacity, etc.)
- Thermo-mechanical properties
- Fabrication of Small Scale Nozzle Components (Prototype)
- Prototype validation under operating conditions of Solid
 Propellant Engines

 And Answer
 2nd
 Intern. Sympoxium: "Hypersonic Flight: from 100.000 to 400.000 ft"

 Op/Light water
 Rome, Italy 30th June Roma July 2016 yrange
 5

	UHT	C Systems I	nvestigated
Mon	olithic	Binary	Ternary
Borides	Carbides	Composites	Composites
ZrB_2	ZrC	ZrB_2 - SiC	ZrB ₂ - ZrC - SiC
TaB_2	TaC	TaB ₂ - SiC	TaB ₂ - TaC - SiC
HfB_{2}	HfC	HfB ₂ - SiC (1)	HfB ₂ - HfC - SiC
		HfB ₂ - SiC (2)	
		HfB ₂ - SiC (3)	
	2 nd Intern Rome, Ital	Symposium - "Hypersonic y 30 th July 2016 _{, 20}	Flight: from 100.000 to 400.000 ft" nposum- 116

7

Weight losses										
		Virgin (g)	HF1(g)	Delta W1 (%)	HF2 (g)	Delta W2 (%)	HF3 (g)	Delta W3 (%)		
	1	28.88521	28.87780	0.02565	28.87673	0.02936				
HfB_2 - SiC (2)	2	29.38954					29.38196	0.02579		
	3	29.23627	29.23177	0.01539	29.22461	0.03988				
	1	29.20405					29.13924	0.22192		
HfB ₂ - SiC (3)	2	29.38484	29.38183	0.01024	29.38136	0.01184				
	3	29.79464	2979442	0.00074	29.79479	-0.00050				
		Heat Fl	ux 1 (HF1) =	= 450 W/cm	² for 120 s _	A/O ratio 1	:1.3			
		Heat Fl	ux 2 (HF2) =	= 1050 W/a	n ² for 80 s	_A/O ratio 1	:13			

Weight losses of samples during ablation tests are negligible

 Attractive
 2nd Intern. Symposium: "Hypersonic Flight: from 100.000 to 400.000 fr"

 CESMA Rome, Italy 30th July 2016, 2016
 18

Conclusions

✤ UHTCs formulations identified and obtained in this work as fully dense products are very promising for High Temperature applications in aggressive environments.

✤ In particular, based on the results obtained with TGA tests conducted with different gaseous environments, the HfB₂-SiC system was selected for the fabrication of small size nozzle components

The capability of HfB_2 -SiC system to withstand harsh conditions was confirmed by the additional characterizations carried out:

- Ablation tests conducted under different heat fluxes
- •Evaluation of thermophysical properties at high T

 2nd
 Intern. Symposium. "Hypersonic Flight: from 100.000 to 400.000 ft"

 Rome, Italy 30th June Roma, July 2016, 2016
 2016

Work in progress and future plans Thermo-mechanical characterization at high T Fabrication of Small Scale Nozzle Components

Prototype validation under actual operating conditions of Solid
 Propellant Engines

✤ Future work: Process scale-up for the fabrication of larger sized components

2nd Intern. Symposium: "Hypersonic Flight: from 100.000 to 400.000 fr" Rome, Italy 30th July 2016, 2016 2016 21